|
using | Base_class = LKF< n_states, n_inputs, -1 > |
| Base class of this class.
|
|
using | x_t = typename Base_class::x_t |
| State vector type .
|
|
using | u_t = typename Base_class::u_t |
| Input vector type .
|
|
using | z_t = typename Base_class::z_t |
| Measurement vector type .
|
|
using | P_t = typename Base_class::P_t |
| State uncertainty covariance matrix type .
|
|
using | R_t = typename Base_class::R_t |
| Measurement noise covariance matrix type .
|
|
using | Q_t = typename Base_class::Q_t |
| Process noise covariance matrix type .
|
|
using | statecov_t = typename Base_class::statecov_t |
| Helper struct for passing around the state and its covariance in one variable.
|
|
typedef Eigen::Matrix< double, n, n > | A_t |
| System transition matrix type .
|
|
typedef Eigen::Matrix< double, n, m > | B_t |
| Input to state mapping matrix type .
|
|
typedef Eigen::Matrix< double, p, n > | H_t |
| State to measurement mapping matrix type .
|
|
typedef Eigen::Matrix< double, n, p > | K_t |
| Kalman gain matrix type .
|
|
using | mat2_t = Eigen::Matrix< double, 2, 2 > |
|
using | mat3_t = Eigen::Matrix< double, 3, 3 > |
|
using | pt3_t = mrs_lib::geometry::vec3_t |
|
using | pt2_t = mrs_lib::geometry::vec2_t |
|
using | vec3_t = mrs_lib::geometry::vec3_t |
|
using | Base_class = KalmanFilter< n, m, p > |
| Base class of this class.
|
|
using | x_t = typename Base_class::x_t |
| State vector type .
|
|
using | u_t = typename Base_class::u_t |
| Input vector type .
|
|
using | z_t = typename Base_class::z_t |
| Measurement vector type .
|
|
using | P_t = typename Base_class::P_t |
| State uncertainty covariance matrix type .
|
|
using | R_t = typename Base_class::R_t |
| Measurement noise covariance matrix type .
|
|
using | Q_t = typename Base_class::Q_t |
| Process noise covariance matrix type .
|
|
using | statecov_t = typename Base_class::statecov_t |
| Helper struct for passing around the state and its covariance in one variable.
|
|
typedef Eigen::Matrix< double, n, n > | A_t |
| System transition matrix type .
|
|
typedef Eigen::Matrix< double, n, m > | B_t |
| Input to state mapping matrix type .
|
|
typedef Eigen::Matrix< double, p, n > | H_t |
| State to measurement mapping matrix type .
|
|
typedef Eigen::Matrix< double, n, p > | K_t |
| Kalman gain matrix type .
|
|
typedef Eigen::Matrix< double, n, 1 > | x_t |
| State vector type .
|
|
typedef Eigen::Matrix< double, m, 1 > | u_t |
| Input vector type .
|
|
typedef Eigen::Matrix< double, p, 1 > | z_t |
| Measurement vector type .
|
|
typedef Eigen::Matrix< double, n, n > | P_t |
| State uncertainty covariance matrix type .
|
|
typedef Eigen::Matrix< double, p, p > | R_t |
| Measurement noise covariance matrix type .
|
|
typedef Eigen::Matrix< double, n, n > | Q_t |
| Process noise covariance matrix type .
|
|
|
| DKF () |
| Convenience default constructor. More...
|
|
| DKF (const A_t &A, const B_t &B) |
| The main constructor. More...
|
|
virtual std::enable_if_t<(n > 3), statecov_t > | correctLine (const statecov_t &sc, const pt3_t &line_origin, const vec3_t &line_direction, const double line_variance) const |
| Applies the correction (update, measurement, data) step of the Kalman filter. More...
|
|
virtual std::enable_if_t<(n > 3), statecov_t > | correctPlane (const statecov_t &sc, const pt3_t &plane_origin, const vec3_t &plane_normal, const double plane_variance) const |
| Applies the correction (update, measurement, data) step of the Kalman filter. More...
|
|
| LKF () |
| Convenience default constructor. More...
|
|
| LKF (const A_t &A, const B_t &B, const H_t &H) |
| The main constructor. More...
|
|
virtual statecov_t | correct (const statecov_t &sc, const z_t &z, const R_t &R) const override |
| Applies the correction (update, measurement, data) step of the Kalman filter. More...
|
|
virtual statecov_t | predict (const statecov_t &sc, const u_t &u, const Q_t &Q,[[maybe_unused]] double dt) const override |
| Applies the prediction (time) step of the Kalman filter. More...
|
|
virtual statecov_t | correct (const statecov_t &sc, const z_t &z, const R_t &R) const =0 |
| Applies the correction (update, measurement, data) step of the Kalman filter. More...
|
|
virtual statecov_t | predict (const statecov_t &sc, const u_t &u, const Q_t &Q, double dt) const =0 |
| Applies the prediction (time) step of the Kalman filter. More...
|
|
|
A_t | A |
| The system transition matrix .
|
|
B_t | B |
| The input to state mapping matrix .
|
|
H_t | H |
| The state to measurement mapping matrix .
|
|
virtual K_t | computeKalmanGain (const statecov_t &sc,[[maybe_unused]] const z_t &z, const R_t &R, const H_t &H) const |
|
statecov_t ::type | correction_impl (const statecov_t &sc, const z_t &z, const R_t &R, const H_t &H) const |
|
static P_t | covariance_predict (const A_t &A, const P_t &P, const Q_t &Q, const double dt) |
|
static std::enable_if< check==0, x_t >::type | state_predict (const A_t &A, const x_t &x,[[maybe_unused]] const B_t &B,[[maybe_unused]] const u_t &u) |
|
static std::enable_if< check !=0, x_t >::type | state_predict (const A_t &A, const x_t &x, const B_t &B, const u_t &u) |
|
static R_t | invert_W (R_t W) |
|